Stabilization mechanisms of an ammonia/methane non-premixed jet flame up to liftoff

نویسندگان

چکیده

Ammonia is a promising alternative fuel for CO2 emission mitigation. The use of ammonia blends allows more flexibility compared to pure and often considered immediate reduction in existing facilities running on natural gas. However, fundamental studies these mixtures remain scarce. This study thus focuses ammonia/methane blend fuels. effect methane jet flame stabilization investigated using non-premixed configuration observe the mechanisms, flame-burner interactions how addition affects attached up liftoff. tip position was observed CH* chemiluminescence. Heat transfer burner monitored by temperature measurement at lip inside impact thermal interactions. main regimes described are still case addition. transition between those appeared be shifted toward larger velocities relative due Those changes could related change mixture combustion properties which both position, heat turn identified regimes. dynamic leading liftoff further analyzed highlight perturbated balance

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A numerical investigation of flame liftoff, stabilization, and blowout

The effects of fuel stream dilution on the liftoff, stabilization, and blowout characteristics of laminar nonpremixed flames NPFs and partially premixed flames PPFs are investigated. Lifted methane-air flames were established in axisymmetric coflowing jets. Because of their flame suppression characteristics, two predominantly inert agents, CO2 and N2, were used as diluents. A time-accurate, imp...

متن کامل

Regimes of Non-premixed Flame-vortex Interactions

Detailed studies of flame-vortex interactions are extremely valuable to improve our understanding of turbulent combustion regimes. Combined experimental and numerical studies have already been performed in the premixed case during previous investigations. Therefore, we decided to carry out a detailed experimental investigation on the regimes observed during interaction of a vortex ring and a no...

متن کامل

Three-dimensional PDF simulation of a piloted turbulent non-premixed jet flame

Turbulent combustion is an important process in many technical applications, e.g. industrial gas furnaces used for heating water, production of steam and combustion in jet and diesel engines. To control the turbulent combustion, simulation tools with predictive power are required. The basic equations for turbulent combustion are well known, but their application to the complex flows appearing i...

متن کامل

Cover illustration: Non-premixed hydrocarbon flame

This year’s cover illustration, reproduced here as figure 1, depicts an image formed by a short-time (1/1000 s) exposure of a non-premixed hydrocarbon flame. The flow is driven by the buoyancy forces generated by the density difference from the combustion heat release and resulting temperature rise. The Reynolds number for this buoyancy-induced, turbulent flow is relatively low, estimated at a ...

متن کامل

Study of Liftoff Mechanism of Nonpremixed Jet Flame near Unity Schmidt Number

Nonpremixed jet flames of dimethyl ether (DME) were studied both experimentally and theoretically to investigate flame liftoff near unity Schmidt number. It was found experimentally that although the DME nonpremixed flames have a Schmidt number larger than unity it cannot be lifted directly by increasing the flow rate. Lifted flames can only be established by igniting the mixture in a narrow re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Combustion and Flame

سال: 2021

ISSN: ['1556-2921', '0010-2180']

DOI: https://doi.org/10.1016/j.combustflame.2021.111657